Abstract

We first establish the Morse decomposition theory of periodic invariant sets for non-autonomous periodic general dynamical systems (set-valued dynamical systems). Then we discuss the stability of Morse decompositions of periodic uniform forward attractors. We also apply the abstract results to non-autonomous periodic differential inclusions with only upper semi-continuous right-hand side. We show that Morse decompositions are robust with respect to both internal and external perturbations (upper semi-continuity of Morse sets). Finally as an application we study the effect of small time delays to asymptotic behavior of control systems from the point of view of Morse decompositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.