Abstract
We first establish the Morse decomposition theory of periodic invariant sets for non-autonomous periodic general dynamical systems (set-valued dynamical systems). Then we discuss the stability of Morse decompositions of periodic uniform forward attractors. We also apply the abstract results to non-autonomous periodic differential inclusions with only upper semi-continuous right-hand side. We show that Morse decompositions are robust with respect to both internal and external perturbations (upper semi-continuity of Morse sets). Finally as an application we study the effect of small time delays to asymptotic behavior of control systems from the point of view of Morse decompositions.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have