Abstract

In this paper, we study classical general relativistic static wormhole configurations with pseudospherical symmetry. We show that, in addition to the hyperbolic wormhole solutions discussed by Lobo and Mimoso in [Phys. Rev. D 82, 044034 (2010)], there exists another wormhole class, which is a truly pseudospherical counterpart of spherical Morris--Thorne wormhole (contrary to the Lobo--Mimoso wormhole class), since all constraints originally defined by Morris and Thorne for spherically symmetric wormholes are satisfied. We show that, for both classes of hyperbolic wormholes, the energy density, at the throat, is always negative, while the radial pressure is positive, contrary to the spherically symmetric Morris--Thorne wormhole. Specific hyperbolic wormholes are constructed and discussed by imposing different conditions for the radial and lateral pressures, or by considering restricted choices for the redshift and the shape functions. In particular, we show that a hyperbolic wormhole cannot be sustained at the throat by phantom energy and that there are pseudospherically symmetric wormholes supported by matter with isotropic pressure and characterized by space sections with an angle deficit (or excess).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.