Abstract
Morphometric information of the brain vascularization is valuable for a variety of clinical and scientific applications. In particular, this information is important when creating arterial tree models for imposing boundary conditions in numerical simulations of the brain hemodynamics. The purpose of this work is to provide quantitative descriptions of arterial branches, bifurcation patterns, shape, and geographical distribution of the arborization of the main cerebral arteries as well as estimations of the corresponding vascular territories. For this purpose, subject-specific digital reconstructions of the brain vascular network created from 3T magnetic resonance angiography images of healthy volunteers are used to derive population-averaged morphometric characteristics of the cerebral arterial trees. Copyri
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have