Abstract

The flow of membrane between the cytoplasm and the lumenal surface during the expansion-contraction cycle of urinary bladder was estimated by stereological examination of electron micrographs of urothelial cells from guinea pigs, gerbils, hamsters, rabbits, and rats. The quantitative data obtained allowed an approximation of the surface area, volume, and numbers of lumenal membranelike vesicles and infoldings per unit volume of cytoplasm. Depending upon the species, approximately 85 to approximately 94% of the membrane surface area translocated into and out of the cytoplasm was in the form of discoidal vesicles. The remainder was accounted for by infoldings of the lumenal plasma membrane. The density of vesicles involved in transfer of membrane was quite similar in all the species examined, except guinea pigs which yielded lower values. In contrast, the densities of the total cytoplasmic pools of discoidal vesicles potentially available for translocation varied greatly among the different species. In general, species of animals with a highly concentrated urine had a greater density of discoidal vesicles than species with a less concentrated urine. This correlation may indicate an authentic relationship between lumenal membranes and the tonicity of urine, such as increased membrane recycling or turnover with increasingly hypertonic urine; or it may signify the existence of some other, more obscure relationship.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call