Abstract

One-dimensional (1D) and two-dimensional (2D) titania/titanate nanostructures are fabricated directly on a self-source metallic titanium (Ti) surface via in situ surface re-construction of a Ti substrate using potassium hydroxide (KOH) under a hydrothermal (HT) condition. The effect of temperature and the concentration of KOH on the variations in morphology and titania-to-titanate phase changes are studied and explained in detail. A growth model is proposed for the formation process of the platelet-to-nanorod conversion mechanism. The field emission (FE) properties of titania/titanate nanostructures are studied, and the effects of the morphologies (such as 1D nanorods, 2D nanoplatelets, and a mixture of 1D nanorods and 2D platelets) on the FE properties of the samples are investigated. The samples depict a reasonable low turn-on field and emission stability. The FE mechanism is observed to follow standard Fowler–Nordheim (FN) electron tunneling. The geometrical field enhancement factor (β) is measured to be very high, and is compared with theoretical values calculated from various existing models to explore the feasibility of these models. The surface modification of metallic Ti by a simple non-lithographic bottom-up method and the low-macroscopic FE properties can provide a potential alternative to field emission displays for low-power panel technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call