Abstract

It has previously been shown that the pair of vasopressin-like immunoreactive (VPLI) neurons of the locust, Locusta migratoria, have cell bodies on the ventral midline of the suboesophageal ganglion and extensive arborisations in all ganglia of the central nervous system. In the present study, we have stained vasopressin-like immunoreactive neurons in 16 additional species of grasshopper, and consistently find this pair of extensive neurons: we assume these to be interspecies homologues. However, the anatomy of these neurons falls into two morphological types: the first, typified by Schistocerca gregaria, has most of its processes distributed in dorsal and lateral neuropil of all ganglia; the second, typified by Locusta migratoria, is equally extensive in its arborisation, but the distribution of branches is shifted peripherally into the optic lobes and the proximal portions of peripheral nerves. It has been suggested that the peripheral fibres in Locusta migratoria are neurohaemal organs for the release of a vasopressin-like diuretic peptide. Our sample of 17 Acridoid species has deliberately selected animals from very different habitats, but our extensive survey of VPLI anatomy shows that peripheral fibres are only present in species from the subfamily Oedipodinae (of which Locusta migratoria is a member) and that no peripheral fibres are present in any of the species from the 4 other subfamilies of the Acridoidea that we have examined. The presence of peripheral fibres is therefore determined by phylogeny and not by habitat. The absence of peripheral VPLI fibres in most grasshopper species examined in this study probably means that the release of putative diuretic hormone from VPLI to control water homeostasis cannot be a conserved function of this ubiquitous neuron. In contrast, the extensive central arborisations and rare antigenicity, which are highly conserved features of the VPLI neuron in all those grasshoppers we have examined, suggests that any conserved role is more likely to be central. A central role for the VPLI neuron has yet to be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call