Abstract

A change in the surface structure of low-density polyethylene films upon chemical modification by gaseous fluorine has been studied by scanning electron microcopy and X-ray spectral analysis. It has been demonstrated that this treatment leads to formation of the wavy surface; its characteristics depend on the method of polymer synthesis and the initial structure of the test sample. A possible mechanism for structural changes in the surface layer of the polymer during fluorination is considered. It is suggested that the molar volume and the configuration of polymer macromolecules change in the course of replacement of hydrogen atoms with fluorine atoms. Mathematical modeling has been performed for the formation of the fluorinated layer with due regard for chemical transformations of macromolecules and structural heterogeneity of the polymers. The isosurfaces of the polymer with various degrees of fluorination calculated within the framework of the above model indicate that the fluorinated layer being formed is characterized by unequal thickness due to different rates of fluorine diffusion in amorphous and crystalline regions. It has been shown that the degree of fluorination of the polymer is dependent on the duration of treatment. This relationship is in satisfactory agreement with the previous experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.