Abstract

We systematically varied the degree of fluorination along the backbone of a series of highly regioregular 3-hexylthiophene-based polymers, P3HT-50F, P3HT-33F, and P3HT-25F, in which 50%, 33%, and 25% of the thiophene units within the polymer chain contain fluorine atoms in the available 4-position, respectively. These materials were homopolymerized using the Kumada catalyst transfer polycondensation method from a set of mono-fluorinated bi-, ter-, and quarterthiophenes to ensure high polymer regioregularity and evenly spaced fluorine atoms along the conjugated thiophene backbone. The monomers were obtained from a synthetic route consisting of iterative Migita–Stille couplings of fluorinated and non-fluorinated 3-hexylthiophenes. The effect of the fluorine atoms on both polymer structure and properties is presented, with supporting quantum mechanical calculations that rationalize the intrinsic conformation preferences of the three P3HT derivatives. P3HT-50F (Mn = 34 kg/mol, 98.5% rr), P3HT-33F (Mn = 46 k...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.