Abstract
Crack growth tests were performed in high-temperature water containing hydrogen peroxide (H2O2) to evaluate the relationships between the crevice structure and H2O2 on stress corrosion cracking (SCC) growth morphology of stainless steel (SS). Small compact tension (CT) specimens were prepared from thermally sensitized type 304 SS. 20–300ppb H2O2 was injected into the high-temperature water at 561K. Intergranular SCC (IGSCC) and transgranular SCC were observed near the side grooves and the central region of the original CT specimens, respectively. Chevron notches were removed from the CT specimens after fatigue pre-crack introduction. Owing to pre-crack shortening, the IGSCC area expanded to the central region of the CT specimens and increased with H2O2 concentration. The effects of H2O2 on SCC appeared intensely near the surfaces exposed to high levels of H2O2. Microanalysis and distribution examination of oxide layers were performed and the percentage of H2O2 remaining in the crack was calculated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have