Abstract

AbstractCone snails, predatory marine gastropods, have developed a specialized prey capture method in which a long, distensible proboscis is used to identify prey and inject venom via a hydraulically propelled hollow radular tooth. Using brightfield, epifluorescence, confocal, and transmission and scanning electron microscopy, we describe the morphology of ciliated sensory structures concentrated on the tip of the proboscis. The number and morphology of these sensory papillae are linked to the type of preferred prey: cone snails feeding on worms and mollusks have short, cone or finger‐shaped papillae, whereas fish‐hunting cone snails have long tubular papillae in addition to short conical papillae. Sensory papillae are well positioned to provide information necessary to locate, identify, and dispatch prey. Proboscis tips and their sensory papillae regenerated within 10 d following experimental ablation, and snails with regenerated proboscis tips were able to locate and envenomate prey. The remarkable intrageneric variation found in the morphology of these sensory structures is probably linked to the specialized prey that cone snail species have evolved to hunt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.