Abstract
The filling processes of water and cyclohexane in porous silica (40 Å, 60 Å and 112 Å pore size samples) were studied using T2 nuclear magnetic resonance (n.m.r.) experiments. The silica pores contained water or cyclohexane and the experiments were performed at room temperature and at filling fractions ranging from 0.02 to 1.0 (that is, completely full). Two distinct processes were observed which depended on the hydrophilicity of the silica surface (or the surface adhesion of the liquid). Water was found to collect in small puddles in the silica interstices, and to form a surface layer over the silica before the remaining pore volume was filled. Water in a surface-treated porous silica and cyclohexane in regular porous silica appeared to completely fill the smaller before the larger pores, and not form a separate surface-coating layer. This work also presents the techniques used to calculate quantitative information about the filling process; specifically, determination of the volume to surface-area ratio of the liquid puddles as well as the number of these puddles, is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.