Abstract

Ti6Al4V alloy is widely used for biomedical implants, and the modification of its surface, at nanoscale level, is a method to enhance its osseointegration. We modified the Ti6Al4V surface, with an initial micro rough topography, by using electrochemical anodization in 1M H3PO4 + 0.5 wt% HF electrolyte, and anodization potential of 20 V. By using short anodization duration, 5 min, or 15 min, the oxide layer presents a nanoporous morphology, and do not cover the entire surface. At an anodization time of 30 min, our results demonstrate the synthesis of continuous, highly ordered nanotubular TiO2 layer (diameter of nanotubes: 25-90 nm, thickness of the layer: 350-450 nm), superimposed over a micro rough topography, the oxide layer exhibiting a good adherence to the substrate, coherence and no brittleness. Anodization time of 2 hours provides the results very similar with those obtained at 30 min in terms of nanotubular layer topography, but some drawbacks appear in terms of surface coverage and continuity of the layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.