Abstract

The genus Haywardozoon represent a little known genus of ctenostome bryozoans that has only been found in the deep‐sea. It forms small, mostly uniserial colonies lacking polymorphs. Zooids have a conspicuous apertural closure mechanism consisting of a cuticular lower lip that closes the aperture. The systematic placement of the genus remains uncertain, detailed morphological studies that include soft‐body morphological traits are missing. Consequently, this is the first study analyzing H. pacificum by means of histological serial sections and 3d‐reconstruction. Zooids are ovoid and in some cases solitary, that is, showing no interconnected zooids. Most prominent is the large vestibular wall that can be more than half of the total length of the zooid. Its vestibular wall is particularly lined by a complex, multilayered and branched cuticle. A single pair of lateral parieto‐diaphragmatic muscles is present. The polypide is small and comprises about 17 tentacles. The digestive tract is short, has an elongated cardia, a vestigial caecum and a vestibular anus. An ovipositor/intertentacular organ and several oligolecithal oocytes were detected. Several aspects of zooidal morphology, including the structure of the bilateral aperture, parieto‐diaphragmatic muscles, general structure of the gut and the thick cuticle, clearly indicate an association to the ctenostome superfamily Alcyonidioidea. Therefore, we reject the previous placement into Hislopioidea and suggest a possible association to pherusellid ctenostomes. New reproductive characters show that H. pacificum is a broadcaster contrary to some other deep‐sea forms that are brooding.Research HighlightMorphology of ctenostome bryozoans remain little investigated. This contribution is the second of a series of detailed morphological analyses of this understudied clade of bryozoans. The morphological investigation of Haywardozoon pacificum revealed numerous characters that show a closer relationship to Flustrellididrae rather than Hislopiidae as previously assumed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call