Abstract
In this study, we demonstrate changes in leaf morphological and physiological traits with tree height from dark understory to bright canopy conditions in various tree species in the Cambodian tropical dry evergreen forest. The vegetation mainly consisted of Dipterocarpaceae and Myristicaceae and the canopy trees usually reached 30-40 m in height. We investigated 25 individuals of 18 tree species ranging from 0.8 to 33 m in height. We measured the leaf photosynthetic rate, stomatal conductance and respiration rate for 3 to 5 leaves per sampling position in the early dry season. All leaves were then divided into two parts: one for measuring dry weight, nitrogen content and δ13C; the other for observation of leaf morphology. The leaf morphological traits, such as leaf mass per area (LMA), cuticle thickness, palisade layer thickness, leaf hardness and stomatal density increased linearly with tree height. The leaf nitrogen content per unit leaf area (Narea) peaked at 10 m from the ground, though the nitrogen content per unit dry leaf mass (Nmass) decreased linearly with tree height. Higher LMA, cuticle thickness and hard leaves in canopy condition may contribute to high drought tolerance and physical strength. The leaf-area-based photosynthetic rate (Amax-area) peaked at an intermediate tree height of approximately 10 m, and then decreased toward the upper canopy. In contrast, the leaf-mass-based photosynthetic rate (Amax-mass) decreased linearly with tree height. Reduction of leaf nitrogen content and stomatal conductance mainly limit photosynthetic capacities with tree height. Overall, many leaf morphological traits could be summarized in a simple and significant relation with tree height, though increasing tree height, which is related to the micro-climatic gradient, leads to both nitrogen and stomatal constraints of leaf photosynthetic capacities, even when considering many different tree species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.