Abstract

The microstructure of aggregates of parallel high-modulus polyethylene fibres, compacted at 138°C to give a composite with good mechanical properties, has been examined. Detail of transverse and longitudinal cross-sections has been revealed by permanganic etching and studied electron microscopically. The fibres pack together irregularly with coordination numbers typically between 4 and 7 and fibre diameters in the range 10–20 μm. Misalignment of fibres is generally close to zero but does occur incrementally, by 10° and more, between successive rows of fibres. A substantial proportion of fibres has deformed, often by shear, during treatment producing a broadening of interfibrillar contacts. A lamellar component of texture is present both between and within fibres. It is inferred to form by melting of those parts of the fibres where there is least constraint on the melt, followed by recrystallization on the fibres as nuclei. The lamellae therefore share the axial orientation of the fibres, while the crystallographic fibre/lamellar contact promotes good transverse properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.