Abstract

Horseradish peroxidase (HRP) was injected intra-axonally into functionally identified primary afferent fibers within the rat spinal trigeminal tract in order to study the morphology of their central terminations. They were physiologically determined to be large, myelinated afferent fibers from periodontium or oral mucosa by means of electrical and mechanical stimulation of their receptive fields. Twenty-eight axons that innervated the periodontium of incisors and 21 axons that innervated the oral mucosa were stained for distances of 2–5 mm from the injection sites at the levels of the main sensory nucleus (Vms), spinal trigeminal nucleus and rostral cervical spinal cord. The collaterals of these primary afferent fibers formed terminal arbors in the medial or dorsomedial part of the Vms, and the oral and interpolar spinal trigeminal nuclei (Vo and Vi). In the caudal spinal trigeminal nucleus (Vc), the collaterals of one half of the periodontium afferent fibers terminated mainly in lamina V at the rostral and middle levels of Vc. On the other hand, the collaterals of the other half of the periodontium afferent fibers terminated mainly in lamina IV at the rostral level of Vc, and rostrally these terminal areas shifted to the most medial part of Vi. The collaterals of mucosa afferent fibers terminated in lamina V at the rostral level of Vc, and these terminal areas shifted gradually to laminae III and IV as the parent axons traveled more caudally. These shifts were staggered rostrocaudally according to the rostrocaudal locations of the receptive fields. The density of collaterals of periodontium afferent fibers in Vi was significantly larger than that of mucosa afferent fibers. The average size of the varicosities of periodontium afferent fibers was significantly larger than those of mucosa afferent fibers in Vo, Vi and Vc. The average number of varicosities belonging to single collaterals of slowly-adapting periodontium afferent fibers in Vi were significantly larger than those in Vo. In Vi, the average number of varicosities of single collaterals of slowly-adapting periodontium afferent fibers were significantly larger than those of rapidly-adapting periodontium afferent fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.