Abstract

<p>In their seminal work on stratigraphic paleobiology, Patzkowsky and Holland highlighted the need for more morphological data that are placed within a stratigraphic context in order to more robustly study the impact of environmental change on morphological disparity. The ability to collect morphological data within sequence stratigraphic architecture has been limited by technique. As a result, most morphological data are collected from museum specimens, usually without sequence stratigraphic information. We used the photogrammetry technique, Structure-from-Motion, to collect brachiopod morphological data from outcrops in the Late Ordovician Cincinnati Arch (Indiana, Ohio, Kentucky; USA) and quantify morphological change within an established sequence stratigraphic architecture.</p><p>SfM uses 2D photographs taken from different angles to reconstruct a 3D shape. We photographed external valves of brachiopods in the field in 360 degrees (approximately 24 photos per specimen) and used the SfM software ‘Agisoft Metashape’ to make 3D models of those specimens. We exported these models into R and used the package ‘geomorph’ to generate a set of semi-landmarks. We used these to create a morphospace to explore the effects of environment and time on 3D shape.</p><p>Results indicate that brachiopod shells separate in morphospace according to their degree of inflation and roundness. These differences are likely controlled by environmental conditions at each position along a water depth gradient. Additionally, our results are consistent with the previously observed breakdown of the environmental gradient in response to the Richmondian invasion. In particular, for the genera <em>Rafinesquina</em> and <em>Cincinitina</em>, pre-invasion specimens inhabit a larger proportion of morphospace, with more specimens exhibiting an ovular outline. Post-invasion specimens contract in morphospace, exhibiting a more rectangular shape. However, <em>Cincinitina</em> is missing from the offshore environment in the C2 sequence and the deep subtidal environment in the C5 sequence, making it difficult to distinguish the effects of invasion from ecophenotypic variation.</p><p>Ultimately, our study demonstrates that SfM makes gathering 3D morphological data from the field possible. Because this is a low-cost and easily accessible method, possibilities of applying it more broadly within paleobiology abound. Further development of this technique will not only provide a better understanding of the distribution of morphological form within stratigraphic architecture, but also increase the quantity of morphological data from key intervals throughout the Phanerozoic. These data can be stored as a digital archive that could facilitate large-scale meta-analyses as well as education and outreach activities.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.