Abstract

A facile and controllable synthesis of porous framework [Cu3(L)2(DABCO)] (1) (H3L = 1,1':3,1''-terphenyl]-4,4'',5'-tricarboxylic acid; DABCO = 1,4-diazabicyclo[2.2.2]octane) microcrystals was realized with morphology evolution from a tetragonal plate to an elongated tetragonal bipyramid, and the particle size changes by tuning the volume ratio of mixed solvents of DMF and H2O. Interestingly, the exposed high-energy {103} crystal facet can be easily tuned by controlling the supersaturation through the increase of the solution concentration, resulting in the formation of spindle microcrystals. It was found that both H2O and HCl play important roles in the morphology evolution process. The gas adsorption properties were found to be dependent on the morphology of microcrystals, and the elongated tetragonal bipyramidal microcrystals show the largest BET surface area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.