Abstract

Phase separation that takes place during the formation of semi-interpenetrating polymer networks based on crosslinked polyurethane and linear polystyrene was studied by small-angle X-ray scattering and light scattering. The kinetics of the chemical reactions was followed by Fourier transform infrared spectroscopy. The occurrence of broad peaks in the X-ray scattering curves was interpreted in terms of distances between the urethane crosslinks. Small modulations on these curves were assigned to sphere-like structures with a diameter of around 5 nm which might be related to the urethane crosslink regions. Small modulations on the light-scattering curves at the beginning of styrene polymerization were assigned to spheres with diameters of around 4.5 μm, which can be related to the polystyrene-rich phase. These modulations disappear with time, which might indicate an increasing polydispersity of the domain sizes. The final morphology was found to depend on the time at which polymerization of styrene is initiated with respect to the time of gelation of polyurethane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call