Abstract

In this study, MAO treatment was used to enrich, with bioactive Ca, Mg and P atoms, as-casted and heat-treated Ti-15Zr-xMo (x = 0, 5, 10 and 15 wt%) alloys, for potential use as advanced metallic biomaterials. The chemical composition of the surface was evaluated by EDS and XPS measurements. The morphology and microstructure was analyzed by OM and SEM images. Crystalline structure and phase composition were characterized by XRD measurements. The results indicated that the oxide layers were porous, with microstructural features of the bulk (grain size and secondary phases) slightly affecting the surface characteristics (pore size, chemical and phase composition). The crystalline structure of the oxide layers were composed by a mixture of anatase and rutile phases (TiO2), with a minority of tetragonal zirconia (ZrO2) and traces of CaCO3 and P2O3 compounds. Chemical analysis indicated that the oxide layers were composed mainly by Ti and Zr oxides, with successful incorporation of the bioactive elements. The obtained results evidenced that the surface characteristics of MAO-treated Ti surfaces can be properly adjusted by the addition of alloying elements and implementation of specific heat treatments on the substrate. This finding can be quite useful for the development of novel biomedical implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.