Abstract
The microphase separation behavior of block copolymers confined in cylindrical nanopores has been extensively investigated. Recently, the solvent-annealing-induced nanowetting in templates (SAINT) method has been demonstrated to be a versatile approach for the infiltration of block copolymers into the nanopores of porous templates. The function of the annealing solvents, however, is still not well understood, especially in the morphology control of the fabricated block copolymer nanostructures. In this work, we elucidate the function of the annealing solvents in the SAINT method using a lamella-forming block copolymer, polystyrene-block-polydimethylsiloxane (PS-b-PDMS), and anodic aluminum oxide (AAO) templates. By changing the composition of the annealing solvents, different morphologies such as the concentric lamellar morphology, the winding cylinder morphology, and the irregular hybrid morphology are observed, mainly caused by the annealing-solvent-induced volume change. The morphology of the block copolymer nanostructures can be further confirmed using an HF solution to remove the PDMS domain selectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.