Abstract
Morphology control is critical to achieve high efficiency CH3NH3PbI3 perovskite solar cells (PSC). In this paper, fluorinated perylene diimide (FPDI) was used as novel organic electron transport material in planar heterojunction perovskite solar cells. The perovskite film was fabricated by sequential vacuum vapor deposition, and the film morphology could be controlled by optimizing the FPDI film morphology with short time solvent spin-coating or solvent vapor annealing (SVA). Dense and uniform perovskite film with high substrate coverage could be obtained when the FPDI film was treated by chloroform SVA for half an hour, and the fill factor (FF) of the perovskite solar cell increased from 30.44% to 55.20%, enhancing the power conversion efficiency (PCE) from 3.23% to 7.44%. The PCE of the best device reached 7.93%, which was comparable to that (8.25%) of the conventional ZnO electron transport layer based perovskite device prepared by the same method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.