Abstract
The Bemisia tabaci species complex is a group of tropical–subtropical hemipterans, some species of which have achieved global distribution over the past 150 years. Several species are regarded currently as among the world’s most pernicious agricultural pests, causing a variety of damage types via direct feeding and plant-disease transmission. Long considered a single variable species, genetic, molecular and reproductive compatibility analyses have revealed that this “species” is actually a complex of between 24 and 48 morphologically cryptic species. However, determinations of which populations represent distinct species have been hampered by a failure to integrate genetic/molecular and morphological species–diagnoses. This, in turn, has limited the success of outbreak-control and eradication programs. Previous morphological investigations, based on traditional and geometric morphometric procedures, have had limited success in identifying genetic/molecular species from patterns of morphological variation in puparia. As an alternative, our investigation focused on exploring the use of a deep-learning convolution neural network (CNN) trained on puparial images and based on an embedded, group-contrast training protocol as a means of searching for consistent differences in puparial morphology. Fifteen molecular species were selected for analysis, all of which had been identified via DNA barcoding and confirmed using more extensive molecular characterizations and crossing experiments. Results demonstrate that all 15 species can be discriminated successfully based on differences in puparium morphology alone. This level of discrimination was achieved for laboratory populations reared on both hairy-leaved and glabrous-leaved host plants. Moreover, cross-tabulation tests confirmed the generality and stability of the CNN discriminant system trained on both ecophenotypic variants. The ability to identify B. tabaci species quickly and accurately from puparial images has the potential to address many long-standing problems in B. tabaci taxonomy and systematics as well as playing a vital role in ongoing pest-management efforts. [Aleyrodidae; entomology; Hemiptera; machine learning; morphometrics; pest control; systematics; taxonomy; whiteflies.]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.