Abstract

paper, we focus on exploring the relationship between weave patterns and their mechanical properties in woven fiber composites through Machine Learning. Specifically, we explore the interactions between woven architectures and in-plane stiffness properties through Deep Convolutional Neural Network (DCNN) and Generative Adversarial Network (GAN). Our research is important for exploring how woven composite’s pattern is related to its mechanical properties and accelerating woven composite design as well as optimization. We focus on two tasks: (1) Stiffness prediction: Predicting in-plane stiffness properties for given weave patterns. Our DCNN extracts high-level features through several convolutional and fully connected layers to determine the final predictions. (2) Weave pattern prediction: Predicting weave patterns for target stiffness properties, which can be treated as the reverse task of the first one. Due to many-to-one mapping between weave patterns and the composite properties, we utilize a Decoder Neural Network as our baseline model and compare its performance with GAN and Genetic Algorithm. We represent the weave patterns as 2D checkerboard models and use finite element analysis (FEA) to determine in-plane stiffness properties, which serve as input data for our ML framework. We show that: (1) for stiffness prediction, DCNN can predict stiffness values for a given weave pattern with relatively high accuracy (above 93%); (2) for weave pattern prediction, the GAN model gives the best prediction accuracy (above 92%) while Decoder Neural Network has the best time efficiency. HAOTIAN FENG

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call