Abstract

AbstractPlant fibers are of increasing interest for use in composite materials. They are renewable resources and waste management is easier than with glass fibers. In the present study, longitudinal stiffness and strength as well as morphology of unidirectional sisal–epoxy composites manufactured by resin transfer molding (RTM) were studied. Horseshoe‐shaped sisal fiber bundles (technical fibers) were nonuniformly distributed in the matrix. In contrast to many wood composites, lumen was not filled by polymer matrix. Technical sisal fibers showed higher effective modulus when included in the composite material than in the technical fiber test (40 GPa as compared with 24 GPa). In contrast, the effective technical fiber strength in the composites was estimated to be around 400 MPa in comparison with a measured technical fiber tensile strength of 550 MPa. Reasons for these phenomena are discussed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2358–2365, 2002

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call