Abstract

Abstract The mechanical properties and dynamic mechanical properties of blends composed of Nylon 6 and poly (butylenes terephthalate) (PBT), with styrene/maleic anhydride (SMA) as compatibilizer, were studied. The observation on the morphologies of the etched surfaces of the cryogenically fractured specimens via scanning electron microscopy (SEM) demonstrated that in the compatibilized Nylon 6/PBT blends, there exists a finer and more uniform dispersion induced by the in-situ interfacial chemical reactions during the preparation than that in the corresponding uncompatibilized blends. On the other hand, the overall mechanical properties of the compatibilized blends could be remarkably improved compared with those of the uncompatibilized ones. Moreover, increasing the amount of the compatibilizer SMA leads to a more efficient dispersion of the PBT phase in Nylon 6/PBT blends. Furthermore, there exists an optimum level of SMA added to achieve the maximum mechanical properties. As far as the mechanism of this reactive compatibilization is concerned, the enhanced interfacial adhesion is necessary to obtain improved dispersion, stable phase morphology, and better mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call