Abstract

Abstract Quantification, formation and nucleation micro-mechanisms of deformation induced martensite during low cycle fatigue behaviour of austenitic stainless steel have been investigated at various strain amplitudes tested at ambient temperature. The evolutionary deformation induced martensite has been quantified through magnetic measurement technique. It has been found that as strain amplitude increases, the volume fraction of deformation induced martensite increases. Extensive analytical transmission electron microscopy studies showed more than one nucleation site for martensitic transformation and the transformation micro-mechanisms have been observed to be: γ (fcc) → ɛ (hcp), γ (fcc) → α′ (bcc), γ (fcc) → deformation twins → α′ (bcc) and γ (fcc) → ɛ (hcp) → α′ (bcc).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.