Abstract

Abstract We present a comprehensive analysis of the shape of dark matter (DM) halos in a sample of 25 Milky Way-like galaxies in TNG50 simulation. Using an enclosed volume iterative method, we infer an oblate-to-triaxial shape for the DM halo with median T ≃ 0.24. We group DM halos into three different categories. Simple halos (32% of the population) establish principal axes whose ordering in magnitude does not change with radius and whose orientations are almost fixed throughout the halo. Twisted halos (32%) experience levels of gradual rotations throughout their radial profiles. Finally, stretched halos (36%) demonstrate a stretching in the lengths of their principal axes where the ordering of different eigenvalues changes with radius. Subsequently, the halo experiences a “rotation” of ∼90° where the stretching occurs. Visualizing the 3D ellipsoid of each halo, for the first time, we report signs of a reorienting ellipsoid in twisted and stretched halos. We examine the impact of baryonic physics on DM halo shape through a comparison to dark matter only (DMO) simulations. This suggests a triaxial (prolate) halo. We analyze the impacts of substructure on DM halo shape in both hydrodynamical and DMO simulations and confirm that they are subdominant. We study the distribution of satellites in our sample. In simple and twisted halos, the angle between satellites’ angular momentum and the galaxy’s angular momentum grows with radius. However, stretched halos show a flat distribution of angles. Overlaying our theoretical outcome on the observational results presented in the literature establishes a fair agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.