Abstract

Advances in electrocatalyst functionality have resulted from the evolution of complex nanostructured materials with increasing degrees of compositional and morphological complexity. Focused almost entirely on pushing the boundaries of intrinsic activity, electrocatalytic material development often overlooks stability. Operating in parallel to the typical mechanisms of electrochemical material degradation, three-dimensional nanomaterials are susceptible to an additional degradation process known as coarsening. Driven by the reduction of surface free energy, surface diffusion evolves the nanoporous morphology toward a solid spherical particle. Here, using nanoporous NiPt alloy nanoparticles (np-NiPt/C) as a representative three-dimensional electrocatalytic material, we demonstrate that coarsening is the dominant mechanism of degradation as observed during accelerated durability testing (ADT). The upper potential limit (UPL) of the ADT protocol is found to have a significant impact on coarsening, with the ra...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.