Abstract

Pork longissimus muscle samples were subjected to the following three marination conditions: (A) oxidation (40 min) in hydroxyl radical-generating solutions (HRGS; 10 μM FeCl(3)/100 μM ascorbate with 5 or 20 mM H(2)O(2), pH 6.2) containing 0.1 M NaCl and then marination (40 min) in 0.6 M NaCl with 15 mM pyrophosphate (PP); (B) simultaneous oxidation/marination (40 min) in HRGS containing 0.6 M NaCl and 15 mM PP; or (C) the same as condition B except that PP was omitted. Protein oxidation, measured by the carbonyl and tryptophan fluorescence changes, enhanced hydration but increased cooking loss of meat. Light microscopy revealed a dense muscle structure characterized by swollen fibers and reduced intercellular spacing in intermediately oxidized muscle samples marinated with 0.6 M NaCl and 15 mM PP. However, oxidized fibers were more susceptible to transverse shrinkage upon cooking than nonoxidized fibers, which was supported by the dynamic ultrastructural changes in myofibrils observed using phase contrast microscopy. These findings provide a further understanding of the complex impact of oxidation on meat hydration and water-binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.