Abstract

This paper presents a systematic study of the galvanic replacement reaction between 23.5 nm single-crystal Ag nanospheres and HAuCl(4) in an aqueous medium. We have monitored both morphological and spectral changes as the molar ratio of HAuCl(4) to Ag is increased. The replacement reaction on single-crystal Ag nanospheres results in the formation of a series of hollow and porous nanostructures composed of Au-Ag alloys. By varying the molar ratio of HAuCl(4) to Ag, we are able to control the size and density of the pores. In addition, the localized surface plasmon resonance peaks of these nanostructures can be readily tuned from 408 to 791 nm as the product becomes increasingly more hollow and porous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call