Abstract

Galvanic replacement reactions have been successfully employed to produce hollow bimetallic nanostructures with a range of shapes. This paper presents a systematic study of the galvanic replacement reaction between 122 nm thick hexagonal Ag nanoplates and HAuCl4 in an aqueous medium. We monitored the morphological and spectral changes as a function of the HAuCl4-to-Ag molar ratio. The replacement reaction on the hexagonal Ag nanoplates resulted in the formation of a series of porous Au–Ag nanostructures with a hex nut shape. The size and density of the pores could be controlled by varying the molar ratio of HAuCl4-to-Ag molar ratio. The localized surface plasmon resonance (LSPR) peaks of these nanostructures were readily tuned from 494 nm to 1044 nm as the porosity of the product was increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.