Abstract

This work attempts to optimize the catalytic activity of the carbon-based materials by engineering their morphological structure. Several flake-like quantum dots with different shapes such as triangulene, elliptical, rhomboid, and square, as well as hydrocarbons having sunflower, kekulene, and snow-like structures, are considered and their electrocatalytic activities toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are theoretically evaluated. The activity analysis indicates that the OER overpotentials for the examined carbon materials vary in the range between 0.56 and 1.22 V. Benefiting from the improved electronic properties due to the proper morphology, remarkable catalytic activity was achieved for the snow-like morphology affording overpotentials of 0.56 V for OER and −0.05 V for HER. In addition to snow-like, other morphologies such as triangulene and square can effectively promote acidic hydrogen evolution via Volmer-Heyrovsky mechanism. On contrary, the high values of free energies for H2O dissociation step reveal that, under the alkaline condition, the examined carbon materials cannot be considered as efficient HER catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call