Abstract

Genetic diversity and comprehensive performance are the basis for the discovery and efficient use of proso millet (Panicum miliaceum L.) core collections. In this study, 386 proso millet core collections were used as materials to observe inflorescence color, leaf phase, inflorescence density, axis shape, branched spike length, panicle type, trichome, measured area of the top3 leaves, and chlorophyll content of the top3 leaves at filling stage. These core collections were also used to record growth period, plant height, diameter of main stem, plant tiller number, branch number, panicle length, panicle number per plant, and panicle weight per plant at the maturation stage. Starch, fat, protein, and yellow pigment contents in the grain and 1000-seed weight were also measured after harvest. Then, quantitative traits were used for diversity analysis and comprehensive evaluation of each collection. Correlations between all traits were also analyzed. Results showed that among the 8 quality traits, the Shannon index (H′) of hull color was the highest (1.588) followed by the H′ of inflorescence density (0.984). However, inflorescence color and axis shape were lower. The H′ of 16 quantitative traits were significantly higher than the quality traits with the following traits having the highest indices: fat content (2.092), 1000-seed weight (2.073), top3 leaves area (2.070), main stem diameter (2.056), and plant height (2.052). Furthermore, all other traits had a diversity higher than 1.900. After a comprehensive evaluation of phenotypic traits, plant height, diameter of main stem, plant tiller number, leaf area of top3 leaves, and 1000-seed weight were the biggest contributors to the principal components. Six high-fat and high-protein cultivars, including Nuoshu, A75-2, Zhiduoaosizhi, Panlonghuangmi, Xiaobaishu, and Xiaohongshu were also screened. Correlations between the quantitative traits were significant, including the correlation between quality traits and quantitative traits. In conclusion, the core collections can be used as basis for discriminating among proso millet cultivars based on related traits and for further studies on millet with rich genetic diversity, good representation, and significant collection between traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.