Abstract
Species of Transversotrema Witenberg, 1944 (Transversotrematidae) occupy a unique ecological niche for the Trematoda, living externally under the scales of their teleost hosts. Previous studies of the genus have been impeded partly by limited variation in ribosomal DNA sequence data between closely related species and partly by a lack of morphometrically informative characters. Here, we assess richness of the tropical Indo-west Pacific species through parallel phylogenetic and morphometric analyses, generating cytochrome c oxidase subunit 1 mitochondrial sequence data and morphometric data for hologenophore specimens from Australia, French Polynesia, Japan and Palau. These analyses demonstrate that molecular data provide the only reliable basis for species identification; host distribution, and to a lesser extent morphology, are useful for identifying just a few species of Transversotrema. We infer that a combination of morphological simplicity and infection site constraint has led to the group displaying exceptionally low morphological diversification. Phylogenetic analyses of the mitochondrial data broadly support previous systematic interpretations based on ribosomal data, but also demonstrate the presence of several morphologically and ecologically cryptic species. Ten new species are described, eight from the Great Barrier Reef, Australia (Transversotrema chrysallis n. sp., Transversotrema daphnidis n. sp., Transversotrema enceladi n. sp., Transversotrema hyperionis n. sp., Transversotrema iapeti n. sp., Transversotrema rheae n. sp., Transversotrema tethyos n. sp., and Transversotrema titanis n. sp.) and two from off Japan (Transversotrema methones n. sp. and Transversotrema panos n. sp.). There are now 26 Transversotrema species known from Australian marine fishes, making it the richest trematode genus for the fauna.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have