Abstract

Irradiation of an industrial aluminum alloy AA1933 with an intense pulsed electron beam with particle energy of 0.35 MeV, a beam current of 2.0 kA, a pulse duration of 5 μs, and a beam diameter of 3 cm results in the formation of a surface layer with a modified structural-phase state. A characteristic feature of the irradiated surface is the presence of cracks and craters on it. This study features the types and morphology of craters on the surface of aluminum alloy AA1933 formed as a result of irradiation by a pulsed electron beam. The study includes figures of a variety of crater types. The distribution of craters according to size and crater density on the irradiated surface was examined. The study also provides for the discussion of the significance of these observations for the sake of a better understanding of the mechanisms of crater formation during irradiation by pulsed electron beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call