Abstract

The morphological events in the cell membrane of Ehrlich ascites tumor (EAT) cells associated with cell fusion caused by HVJ were investigated with freeze-fracture technique. When cell fusion was carried out at 37 °C, the EATC fusion was too rapid to allow identification of the sequential steps of membrane fusion and no deleterious changes in the plasma membrane could be detected. However, on lowering the incubation temperature from 37 to 28 °C, the process of cell fusion was slower and there was a distinct alteration in the plasma membrane. On incubation of cell aggregates with HVJ at 28 °C, the fusion reaction proceeded very slowly. On incubation for 10 min, fusion was initiated in a few cells, but most of the cells remained agglutinated with their cell membranes close to those of neighboring cells and often in direct contact in small localized regions. When cells in this stage were chilled and fixed at 4 °C, large clusters of intramembrane particles (IMPs) were seen all over the P face. On further incubation of the cells at 37 °C, cell fusion proceeded rapidly and the IMPs became randomly redistributed, indicating that clustering is a reversible phenomenon occurring in the early stage of cell fusion. This clustering was temperature-dependent. It was seen in cell fixations at 4 °C, but not at 28 °C without chilling, and it was prevented by inhibitors of cell fusion, such as cytochalasin D (CD) or glucose at high concentration. These findings suggest that certain structural changes in the plasma membrane that may induce thermotropic aggregation of IMP are required to initiate cell fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.