Abstract
Differences in the nature of the gangliosides present in two types of Ehrlich ascites tumour (EAT) cells, the adherent and non-adherent EAT cells, were studied. Gangliosides were isolated by DEAE Sephadex column chromatography and analysed by high-performance thin-layer chromatography (HPTLC). The non-adherent EAT (na-EAT) cells which grow in the peritoneal cavity of mice were selected for growth on basement membrane and tissue culture plastic to give the adherent EAT (a-EAT) cells. na-EAT cells contained 1.57 nmol lipid-bound sialic acid per mg protein and at least 12 different gangliosides, including major gangliosides such as GM3, GM2, GM1, GD3, GD1a and GT1b. On the other hand, the ganglioside pattern of a-EAT cells differed significantly from that of na-EAT cells, both quantitatively and qualitatively. The content of lipid-bound sialic acid in a-EAT cells was only 0.24 nmol per mg of protein. The gangliosides in a-EAT cells were characterized as GD1a and trisialogangliosides and, significantly, a-EAT cells did not contain monosialogangliosides. Neutral glycolipids were isolated from both cell lines and their patterns were compared. In contrast to the gangliosides pattern, their neutral glycolipid patterns were similar. Glucosylceramide and lactosylceramide were the major components in both types of cells. In addition to na- and a-EAT cells, a-EAT cells were passaged in mice by intraperitoneal injection, giving rise to a third variant (c/m EAT cells). We analysed the gangliosides in c/m EAT cells to determine whether there was a change in the ganglioside pattern found in na-EAT cells. After repeated passage of c/m EAT cells in mice, the pattern of gangliosides shifted to that of na-EAT cells. Alterations of ganglioside composition may be associated with the growth environment of the murine peritoneal cavity; alternatively, a selection process may have occurred.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.