Abstract

Anisakid nematode larvae from Trichiurus lepturus off coast of Rio de Janeiro were studied using light, laser confocal and scanning electron microscopy, in addition to a molecular approach. Mitochondrial cytochrome c-oxidase subunit 2 (mtDNA cox-2), partial 28S (LSU) and internal transcribed spacers (ITS-1, 5.8S, ITS-2) of ribosomal DNA were amplified using the polymerase chain reaction and sequenced to evaluate the phylogenetic relationships between the nematode taxa. The morphological and genetic profiles confirmed that, of the 1,030 larvae collected from the 64 fish examined, 398 were analysed, of which 361 were Hysterothylacium sp. and 37 were Anisakis typica. Larvae of Hysterothylacium sp. were not identified to the species level due to the absence of similar sequences for adult parasites; however, the ITS sequence clustered in the phylogenetic tree with sequences of H. deardorffoverstreetorum, whereas an mtDNA cox-2 and LSU concatenated phylogenetic analysis demonstrated the presence of two clades, both of them under the same name as the larval H. deardorffoverstreetorum. Data on the occurrence of parasites during the winter and summer months were compared using the t-test. The greatest prevalence and intensity of infection were recorded for larval Hysterothylacium, with a prevalence of 51.56% and an intensity of up to 55 parasites per fish. The larval Anisakis exhibit a higher abundance and intensity of infection in the winter months, and those of Hysterothylacium during the summer. However, the t-test indicated no significant differences between the abundance and intensity of infection recorded during the months of collection for either of these larval nematodes. All sequences generated in this study were deposited in GenBank.

Highlights

  • Anisakid nematodes are parasites with an indirect life cycle, which utilizes hosts at different trophic levels in the food web

  • An mtDNA cox-2 and LSU concatenated phylogenetic analysis (Figure 7) of sequences of Hysterothylacium specimens studied in the present paper demonstrated the presence of two clades, both of them including sequences under the name of H. deardorffoverstreetorum retrievable from GenBank (Figure 7)

  • The larvae of Hysterothylacium sp. are difficult to identify and their similarity with related genera has resulted in taxonomic confusion, with species of Hysterothylacium being identified as Contracaecum or Iheringascaris [12,13,14]

Read more

Summary

Introduction

Anisakid nematodes are parasites with an indirect life cycle, which utilizes hosts at different trophic levels in the food web. Aquatic vertebrates, such as piscivorous fishes, mammals and birds, are definitive hosts and aquatic invertebrates and fishes act as intermediate or paratenic hosts [1,2]. The accurate identification of anisakid species is essential, because there are important pathogens within the group that can cause problems for human and animal health [2,5,6,7]. Molecular tools are valuable for linking anisakid larva to known adults as well as for systematic, evolutionary and ecological studies of these parasites [1,4,5,8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call