Abstract

The sensitivity of the surface morphology and microstructure of N-polar-oriented InAlN to variations in composition, temperature, and layer thickness for thin films grown by plasma-assisted molecular beam epitaxy (PAMBE) has been investigated. Lateral compositional inhomogeneity is present in N-rich InAlN films grown at low temperature, and phase segregation is exacerbated with increasing InN fraction. A smooth, step-flow surface morphology and elimination of compositional inhomogeneity can be achieved at a growth temperature 50 °C above the onset of In evaporation (650 °C). A GaN/AlN/GaN/200-nm InAlN heterostructure had a sheet charge density of 1.7 × 1013 cm−2 and no degradation in mobility (1760 cm2/V s) relative to 15-nm-thick InAlN layers. Demonstration of thick-barrier high-electron-mobility transistors with good direct-current characteristics shows that device quality, thick InAlN layers can be successfully grown by PAMBE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call