Abstract
In the guinea-pig hypothalamus, a group of enkephalinergic cells forms a well-circumscribed nuclear area called the magnocellular dorsal nucleus (MDN). This nucleus gives rise to a prominent projection to the lateral septum: the hypothalamo-septal enkephalinergic pathway. In the present study, MDN neurons visualized by Golgi impregnation were subjected to morphological analysis in order to define the potential segregation of cellular types within the MDN. This study was complemented by additional observations of MDN neurons intracellularly injected by Lucifer yellow (LY) or horseradish peroxidase (HRP) during the in vitro incubation of hypothalamic slices. The following results were obtained from the analysis of 200 neurons: 163 Golgi-impregnated cells plus 37 injected cells (LY = 14; HRP = 23). Thirteen HRP-injected cells were precisely located in the MDN and 10 were located in the perifornical area surrounding the MDN. Four different cellular types were identified. Type-I neurons (41%) displayed a globular perikaryon, a variable number of primary dendrites that were poorly ramified, no preferential orientation, and an axon emerging from the perikaryon. Type-II neurons (30.5%) had a triangular perikaryon, three well-ramified primary dendrites, an orientation perpendicular to the third ventricle, and an axon emerging from the perikaryon. Type-III neurons (22%) exhibited a spindle-shaped perikaryon, two opposed well-ramified primary dendrites, an orientation perpendicular to the third ventricle, and an axon emerging from a primary dendrite. Type-IV neurons (6.5%), showed a globular perikaryon, a variable number of primary dendrites, poorly ramified dendrites, an orientation parallel to the third ventricle, and an axon whose orientation could not be identified. Neurons labeled after intracellular injection belonged to the first three cellular types.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have