Abstract

Regulation of growth and development of cultivated plants in order to optimize the production process is one of the main objectives of modern plant physiology. Both activators and growth inhibitors are used for this purpose. The effect of foliar treatment with 0.005% solution of gibberellic acid and 0.025% solution of antigibberellic preparation of tebuconazole on the morphogenesis, leaf structure, photosynthetic pigment content, balance of phytohormones and eggplant productivity cv. Diamond variety was investigated. The treatment with the preparations was carried out in the budding phase. The vegetation experiment was laid under soil and sand culture in vessels of a ten-liter capacity. The morphometric parameters were determined every 10 days, the mesostructure was studied in the leaves of the middle tier in the phase of fruit formation, chlorophyll content was measured in the raw material by spect­rophotometric method. Analytical determination of phytohormones (indole-3-acetic acid, gibberellic, abscisic acids and cytokinins – zeatin, zeatin-O-glucoside, zeatinriboside, isopentenyladenine and isopentenyladenosine) was performed by high performance liquid chromatography. Under the action of gibberellic acid, plant height increased significantly, and it decreased after its treatment with tebuconazole. The stimulator and inhibitor increased the number of leaves per plant, the weight of the leaf dry matter, the area of the individual leaf blade and the area of leaves per plant. Both preparations increased the weight of the raw material of the stems and roots, as well as the mass of dry matter of the whole plant. Under the action of tebuconazole, the content of chlorophylls in the leaves increased, while under the action of gibberellic acid it decreased. After treatment with gibberellic acid and tebuconazole, the thickness of the leaf blade increased due to chlorenchyma thickening. In the variant with gibberellic acid, the thickness of upper and lower epidermis increased, and in the variant with tebuconazole, these parameters decreased. Both growth regulators increased the volume of cells of the columnar parenchyma. The contet of endogenous gibberellic, indole-3-acetic and abscisic acids of the stems and especially in the leaves increased with the treatment of exogenous gibberellic acid, whereas after the application of tebuconazole the gibberellic and indole-3-acetic acid content of the stems decreased significantly and practically decreased to traces. Instead, the amount of abscisic acid increased. After treatment with exogenous gibberellic acid, the pool of cytokinins in the leaves significantly decreased. The inactive isoforms of the hormone zeatin-O-glucoside and isopentenyladenosine dominated in the stems. The effect of tebuconazole decreased the pool of cytokinins in the stems and increased in the leaves. In general, due to the multidirectional action, growth regulators positively influenced the elements of eggplant productivity. More effective was the retardant – tebuconazole. Therefore, the anatomic-morphological and structural-functional rearrangements in eggplants under the effects of exogenous gibberellic acid and tebuconazole are due to changes in the balance and distribution of endogenous hormones. Increased photosynthetic activity, stimulation of growth processes of some organs of the plant and inhibition of others enlarged the biological productivity of the culture.

Highlights

  • Plant growth, development and productivity are controlled by complex physiological and biochemical mechanisms that are affected by a wide range of endogenous and exogenous factors

  • Foliar eggplant treatment in the budding phase with 0.005% aqueous gibberellic acid and 0.025% aqueous tebuconazole affected the rate of growth processes

  • Since the leaf is the main donor of plastic substances in the plant, the influence of growth regulators on the leaf apparatus has been analyzed

Read more

Summary

Introduction

Development and productivity are controlled by complex physiological and biochemical mechanisms that are affected by a wide range of endogenous and exogenous factors. The first involves the use of exogenous hormones of stimulants: auxins, gibberellins and cytokinins or their synthetic analogues, which activate histo- and morphogenesis, accelerate proliferation and differentiation of cells, resulting in the formation of a branched root system, anatomical and morphological generative and morphological changes in vegetative and generative organs, increasing power, increasing photosynthetic activity (Rogach & Rogach, 2015; Rohach, 2017; Khodanitska et al, 2019). With these changes, the synthesis of plastic compounds, the flow of which is directed to the generative and reserve organs, is enhanced (Kuryata et al, 2019b; Poprotska et al, 2019)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.