Abstract

The twin summit craters of Mount Rainier, Washington, USA host the largest known glaciovolcanic caves in the world and at 4382 m, the highest elevation caves in the USA. The caves are formed in ice at the glacier-rock interface by volcanogenic gases and atmospheric advection. However, the way in which discrete caves are formed and evolve remains poorly understood. Surveys of the cave systems in 1970−1973 and 1997−1998 in both the West and East Craters documented cave passage morphology. Field expeditions from 2014−2017 comprehensively surveyed the Rainier summit caves and undertook thermal imaging and temperature monitoring. Significant changes had occurred. In the East Crater, documented cave length has nearly doubled since 1973 to 3593 m of passage spanning 144 m of depth, revealing a new subglacial lake, and now nearly circumnavigating the East Crater. Of the reported increase in length, some 600 m of the mapped passage is possibly newly formed. Across 47 years of observation, certain sections of the cave appear to be preserved in form and position through time, while others are more actively being lost or forming. Conserved passages are generally sub-horizontal, passages following the curvilinear crater contours, show low temperature variability, and are dependent on perennial fumarolic activity or distributed heat flux emanating from warm bedrock and sediment floors. Transient passages are smaller diameter dendritic passages following the slope of the ice-rock interface towards entrance zones and normal to the circum-crater passage. They also show higher variability in temperature and airflow and are subject to seasonal weather and mechanical collapse, which may contribute to transience. Additional research is required to confirm the mechanisms maintaining conserved passages and formation of transient passages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.