Abstract
Addiction is a chronic disorder with a high risk of relapse. The neural mechanisms mediating addictions require protein synthesis, which could be relevant for the development of more effective treatments. The mTOR signaling pathway regulates protein synthesis processes that have recently been linked to the development of drug addiction. To assess the effects of morphine self-administration and its subsequent extinction on the expression of several genes that act in this pathway, and on the levels of specific phosphoproteins (Akt, Gsk3α/β, mTOR, PDK1 and p70 S6 kinase) in the amygdala, nucleus accumbens, and the prefrontal cortex. Male Lewis rats underwent morphine self-administration (1 mg/kg) for 19 days. They subsequently were submitted to extinction training for 15 days. Rats were killed either after self-administration or extinction, their brains extracted, and gene expression or phosphoprotein levels were assessed. We found an increase in Raptor and Eif4ebp2 expression in the amygdala of rats that self-administered morphine, even after extinction. The expression of Insr in the amygdala of control animals decreased over time while the opposite effect was seen in the rats that self-administered morphine. Our results suggest that morphine self-administration affects the gene expression of some elements of the translational machinery in the amygdala.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.