Abstract
Influence of morphine self-administration on gene expression in the rat amygdala was studied using rat genome DNA arrays U34A from Affymetrix. Animals were trained to self-administer morphine, each having two 'yoked' control animals, receiving passive injections of either morphine or saline. After 40 sessions of self-administration, amygdalae were removed, total RNA was isolated and used to prepare probes for Genechip arrays. The treatment was found to significantly change abundance of 29 transcripts. Analysis by means of reverse transcription real-time PCR showed significant changes in abundance of five transcripts: gamma protein kinase C (PKC), upstream binding factor 2 (UBF2), lysozyme, noggin and heat shock protein 70 (hsp70). After 30 days of forced abstinence from morphine self-administration, abundance of hsp70 and lysozyme returned to basal levels. Changes in abundance of UBF2 persisted, and abundance of three additional genes, namely nuclear factor I/A, gamma1 subunit of GABAA receptor and the neuronal calcium sensor 1, changed. Additionally, acute as well as chronic intraperitoneal morphine administration changed the abundance of PKC gamma, gamma1 subunit of GABAA and hsp70 genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.