Abstract

BackgroundHerein, we first time used the gum Moringa oleifera as reducing and capping agent for successful synthesis of silver nitrate and zinc oxide nanoparticles(NPs) through green synthesis approach. This study was aimed to check antibacterial activities of synthesized NPs against multidrug resistant bacteria methicillin-resistant Staphylococcus aureus (MRSA).MethodsAqueous solutions of AgNO3 and purified gum powder were mixed with 1:1 ratio, autoclaved at 120oC for 2 min. NPs pellet collected after centrifugation at 10,000 g for 20 min. ZnO NPs were prepared by mixing purified gum powder and metal salt with1:1 ratio, heated (70oC) and stirred at 100 rpm for 4 h followed by centrifugation at 10,000 g for 20 min. Pellet was washed and calcinated at 400oC for 4 h. Antibacterial potential against E. coli, S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) was assessed by widely used Kirby-Bauer antibiotic susceptibility test.ResultsOptical observation of colour change from transparent to dark and UV-Visible analysis confirmed the synthesis of NPs. Fourier transform infrared spectroscopy (FTIR) of prepared nonmaterial revealed the characteristic AgNPs and ZnO stretch vibrations at wave number of 523 cm− 1 and 471 cm− 1resectively. Crystalline nature of AgNPs and ZnO NPs was confirmed by x-ray diffraction pattern with clear sharp Peaks. Scanning electron microscopy (SEM) revealed good surface morphology of AgNPs and ZnO NPs with 50nm and 60nm size respectively. AgNPs and ZnO NPs exhibited excellent antibacterial activity against E. coli (with zone of inhibition of 21 ± 02mm and 22 ± 03mm) and S.aureus ( with zone of inhibition of 20 ± 03mm and 21 ± 02mm) while good activity was observed against “super bug” methicillin-resistant Staphylococcus aureus (MRSA) with 16 ± 03mm ad 17 ± 02mm zone if inhibitions respectively.ConclusionsThis novel addition of Moringa Gum based nanoparticles will open new dimensions in the field of nanomedicine and pharmaceutics especially against MDR bacterial strains.

Highlights

  • We first time used the gum Moringa oleifera as reducing and capping agent for successful synthesis of silver nitrate and zinc oxide nanoparticles(NPs) through green synthesis approach

  • Plants gums/ resins due to their properties of nontoxicity, non-polluting, sustainable, recyclable, low costs, eco-friendliness, wide spread availability, biodegradability and biocompatibility have bestowed them unique position in the field of pharmaceuticals, nanoparticles synthesis and food industry[1]

  • Findings from high performance double beam T80 + UVVisible spectrophotometer-PG instruments are presented in Fig. 2 reveals absorption pattern of Gum Moringa (GM), AgNPs and ZnO NPs synthesized through “green” method

Read more

Summary

Introduction

We first time used the gum Moringa oleifera as reducing and capping agent for successful synthesis of silver nitrate and zinc oxide nanoparticles(NPs) through green synthesis approach. ZnO NPs were prepared by mixing purified gum powder and metal salt with1:1 ratio, heated (70oC) and stirred at 100 rpm for 4 h followed by centrifugation at 10,000 g for 20 min. Natural polysaccharides/ biopolymers based nanoparticles have a lot of advantages over similar synthetic entities These plants polymers do double actions i.e. they act as stabilizing as well as reducing agents for metal ions while synthesizing nanoparticles [2]. Its different parts contain variety of important phenols, amino acids, proteins, vitamins and β-carotene, [3] Different parts of this plant has amazing medicinal properties like antiulcer, diuretic, antitumor, antipyretic, anti-inflammatory, antispasmodic antiepileptic, antihypertensive, anti-diabetic ,cholesterol lowering and antioxidant. This plant is being used in indigenous health system of south Asian region [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.