Abstract

Stoichiometric carbon dioxide reduction to highly reduced C1 molecules, such as formic acid (2e- ), formaldehyde (4e- ), methanol (6e- ) or even most-reduced methane (8e- ), has been successfully achieved by using organosilanes, organoboranes, and frustrated Lewis Pairs (FLPs) in the presence of suitable catalyst. The development of renewable organohydride compounds could be the best alternative in this regard as they have shown promise for the transfer of hydride directly to CO2 . Reduction of CO2 by two electrons and two protons to afford formic acid by using renewable organohydride molecules has recently been investigated by various groups. However, catalytic CO2 reduction to ≥2e- -reduced products by using renewable organohydride-based molecules has rarely been explored. This Minireview summarizes important findings in this regard, encompassing both stoichiometric and catalytic CO2 reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.