Abstract

Techniques from electrical network theory have been used to establish various properties of random walks. We explore this connection further, by showing how the classical formulas for the determinant and cofactors of the admittance matrix, due to Maxwell and Kirchoff, yield upper bounds on the edge stretch factor of the harmonic random walk. For any complete, n-vertex graph with distances assigned to its edges, we show the upper bound of (n−1) 2 . If the distance function satisfies the triangle inequality, we give the upper bound of 1 2 n(n−1) . Both bounds are tight. As a consequence, we obtain that the harmonic algorithm for the k server problem is 1 2 k(k+1) -competitive against the lazy adversary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.