Abstract
We solve the Diophantine equation$Y^{2}=X^{3}+k$for all nonzero integers$k$with$|k|\leqslant 10^{7}$. Our approach uses a classical connection between these equations and cubic Thue equations. The latter can be treated algorithmically via lower bounds for linear forms in logarithms in conjunction with lattice-basis reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.