Abstract
This study investigates a novel multi-objective differential evolution (MDE) solution methodology for multi-objective optimal power flow (MOPF) problem. The MOPF problem is modelled with various technical and economical objective functions. These objectives are handled as mono, bi, tri, and quad-objective MOPF problems. For solving these MOPF formulations, a novel MDE algorithm is proposed. The novel MDE algorithm modifies the DE variant (DE/best/1) with Pareto ranking in the selection operator and develops a fuzzy-based best compromise solution for each generation to feed the mutation operator. This modification guarantees high convergence speed and enhances the search capability via exploring the neighbourhood of the best compromise solution in successive generations. The standard IEEE 57-bus power system is emulated to prove the effectiveness and competence solutions of the mono, bi, tri, and quad-objective MOPF at acceptable techno-economic benefits compared with other evolutionary methods. Similarly, the standard IEEE 118-bus test system is used to show the effectiveness of the proposed algorithm for solving the OPF problem in a large-scale power system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.